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Abstract

I estimate the long-run impacts on educational outcomes of early childhood ex-

posure to lead through drinking water. Using data on education, on drinking water

quality violations and on drinking water lead concentration in Texas, I employ in-

strumental variables and difference-in-difference strategies. I find that exposure to

lead from drinking water in one’s year of birth has a significant negative impact on

educational achievements, as evidenced by lower scores and pass rates on standard-

ized math and English tests in third grade, and by lower high school graduation

rates. Children from African-American households are disproportionately impacted.

I find evidence of harm to educational achievement from exposure to lead at levels

that are below those currently considered “permissible”. My results also suggest

that substantial socioeconomic benefits would accrue from eliminating violations of

regulations intended to limit lead levels in drinking water. For Texas, this would

lead to $241 million to $535 million in increased income.
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1 Introduction

Despite more than 30 years of efforts to limit lead exposure and about $2.0 trillion (measured

in 2017 dollars) invested to provide safe drinking water since 1974 (Keiser & Shapiro 2019b),

nearly 10 million people annually in the United States still drank water from water utilities that

violated the Lead and Copper Rule (LCR), the main regulation that governs lead concentration

in drinking water (Fedinick 2018). Early childhood exposure to lead has irreversible health and

behavioral consequences, as fetuses and young children absorb lead to a greater degree than

adults (Hanna-Attisha et al. 2016). Despite the wealth of evidence of the harms of exposure

to lead through sources like gasoline and paint, there is little evidence on the long-run causal

impact of lead from drinking water. Since ingested lead (from drinking water or paint chips)

and inhaled lead (from gasoline or paint dust) are absorbed differently by human body (Agency

for Toxic Substances and Disease Registry 2017), there is an important gap in the literature in

terms of the potential public health and economic ramifications — especially if long-run returns

have been excluded from the benefit-cost analysis of drinking water regulations.

I investigate how early childhood exposure to lead in drinking water affects long-run edu-

cational outcomes. I quantify whether and how the impacts of lead exposure through drinking

water differ by socioeconomic characteristics such as gender, race and household income levels

to discern which groups are most at risk. Thus, this paper provides important information for

about the public health and socioeconomic ramification of the regulation and mitigation of lead

in drinking water.

Using confidential education data from Texas on educational outcomes for over 2.6 million

students and data on lead contamination in drinking water from the U.S. Environmental Protec-

tion Agency (EPA), I estimate the causal educational impact of exposure to such contamination

during the first year of life. I consider two main educational outcomes: third-grade standardized

test results and high school graduation rates, which are the earliest and latest educational out-

comes available in my data. I use two identification strategies: an instrumental variables (IVs)

strategy to estimate the impact on standardized tests, and a difference-in-difference (DID) strat-

egy to study the impact on high school graduation rate.

A challenge in assessing the long-run impacts of lead exposure through drinking water is

controlling for all relevant confounders. Because lead pipes and fixtures exist in homes built

before 1986, people who live in older homes and lower-income neighborhoods are likely to be

2



exposed to higher levels of lead through the water they drink. People from minority groups, such

as African-Americans and Hispanics are more likely to live in low-income neighborhoods (Osypuk

et al. 2009). To address the potential endogeneity problem, I employ IVs strategies by exploiting

the exogenous variation of water chemistry that affects lead concentrations in water. Corrosion

of lead plumbing materials is the most common source of lead in drinking water. Prior research

has shown that surface water trends in chloride affect corrosivity in water distribution systems,

which further increase lead concentrations in drinking water (Stets et al. 2018). Thus, I use the

following IVs: the exogenous variation in surface water chloride concentration, which affects lead

concentrations in finished drinking water; and the exogenous variation of the historical presence

of lead pipes. The identifying assumption of the IVs approach is that — after flexibly controlling

for many individuals, neighborhood, and climate characteristics — changes in a county’s surface

water chloride are unrelated to changes in the county’s educational outcomes, except through

the resulting impact of lead concentrations in drinking water. At the same time, because the

IVs approach is constrained by the availability of data on lead concentrations, I also employ a

DID strategy using plausibly exogenous variation from the timing of drinking water violations

to study the impact of exposure, linking the timing of a violation of the federal regulation with

the year of birth.

I find that even a very low level of drinking water lead exposure in a child’s birth year has

significant negative impacts on third-grade standardized test scores. Specifically, I find that

eliminating lead in Texas drinking water could increase average reading scores by 1.5 percent

and math scores by 6 percent of a standard deviation. These estimates are in line with standard

estimates from the literature using blood lead levels, a more precise physiological measure of

lead exposure that is not systematically available at sufficient spatial and inter-temporal scales

to allow this kind of analysis. The magnitudes of my estimates are small to medium based

on the guidance from Kraft (2020) on the effect size of various educational interventions. The

magnitudes are similar to those documented in the existing literature on the causal effects of

educational policies, with impacts similar to those found from reducing the student-teacher ratio,

or increasing teachers’ experience (Krueger 1999). For example, I find that removing lead from

drinking water would likely generate educational effects similar to those achieved by having two

fewer students in kindergarten classes (Rockoff 2004).

From the DID model, I find that students who experience a new violation in their birth

3



year have a statistically significantly lower probability of graduating high school. Given the

income premium of having a high school diploma, such a treatment violation in the birth year

may be associated with a 0.6 percent decrease in annual income through the impact on high

school graduation alone. For the cohorts in my sample, the benefits in terms of increased income

from eliminating such violations in Texas would be around $241 million to $535 million over the

lifetime. If 20% of the population during my study period were exposed to such violations, the

loss of wages alone could range from $10 billion to $22 billion.

Additionally, I find that children from African-American families are more vulnerable to lead

exposure, suggesting that early childhood lead exposure may be one contributing factor of the

racial gap in educational achievement in the United States. Specifically, I find that conditional

on the same level of lead exposure, African-American students score 2% of a standard deviation

lower on reading tests and 1% of a standard deviation less on math tests compared to students

from other racial groups. Moreover, African-American students who were exposed to a lead

violation in the first year of life are 7% less likely to graduate from high school than students

from other racial groups that also experienced such exposure. While I find some mixed evidence

on other demographic groups, I find Asian students, Hispanic students and students from families

with free and reduced lunch also score less in math tests conditional on the same level of lead

exposure.

I make the following contributions to the literature. First, I provide the first evidence of the

impacts on elementary school achievement from contemporary exposure to lead from drinking

water in the United States. I show that exposure even at the low levels typical of regulated United

States water systems may cause damage. Lead in drinking water is an ongoing public health

crisis in some cities, with the largest impacts on very young children and pregnant mothers.

While the United States has one of the best water supply systems in the world (Columbia Water

Center 2016), elevated lead concentrations in drinking water in Flint, Michigan; Newark, New

Jersey; and Washington, D.C., are among recent, high-profile occurrences. Most papers that

estimate damages from lead exposure focus on airborne lead from gasoline or lead paint dust

and paint chips (Billings & Schnepel 2018, Aizer et al. 2018, Aizer & Currie 2019, Hollingsworth

& Rudik 2020, Grönqvist et al. 2020). The few studies examine the impact of lead exposure

from drinking water are either historical or focus on contemporary effects (Ferrie et al. 2012,

Clay et al. 2014, Dave & Yang 2020, Gazze & Heissel 2021, Christensen et al. 2021).
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Second, I provide the first evidence that the negative effects of early childhood lead exposure

from drinking water persist through longer educational milestones, such as high school gradu-

ation. Previous studies have documented lead’s impact on children’s early cognitive ability,

intelligence score (Ferrie et al. 2012), educational outcomes (Reyes 2015b, Aizer & Currie 2019),

and later crime rate, risky behavior (Reyes 2015b) and juvenile delinquency (Aizer & Currie

2019). However, these studies mostly focus on blood lead levels or lead from gasoline. They also

look at a fairly short-term impact of lead exposure with a smaller sample. Few studies estimate

the long-run impacts of lead exposure, such as the impact on the high school graduation rate

(Grönqvist et al. 2020). Using data on millions of children from Texas, I find that the negative

impact of lead exposure through the drinking water of one’s household during the year of one’s

birth can persist through high school, some 17 to 18 years after that initial exposure.

Third, this paper contributes to the literature on lead exposure’s implications for inequality.

Economic and racial inequality can cause poor and minority children to have greater exposure

to lead, and prior work suggests that lead may be one cause of continuing disparities in test

scores (Aizer & Currie 2019). Studies have shown wide racial and class inequality in lead ex-

posure (Raymond & Brown 2017). While existing research finds that differences in housing

conditions and exposures to lead-contaminated house dust contribute strongly to the racial dis-

parity in urban children’s blood lead levels (Lanphear et al. 2000), other work reports that such

racial disparity persists even after controlling for matters such as neighborhood-level education,

poverty, and age of neighborhood housing (Sampson & Winter 2016). Moreover, children from

minority and poor neighborhoods are not only disproportionately exposed to lead; they also

have less access to mitigating measures such as good nutrition to offset damages caused by lead

exposure (Gallicchio et al. 2002, Committee on Environmental Health and others 2005).

As underscored by the recent resurgence of the environmental justice (EJ) literature, better

understanding the causes of inequality in lead exposure and its consequences contribute to new

approaches and policies for reducing social and economic inequality (Banzhaf et al. 2019).

The rest of the paper proceeds as follows: Section 2 provides a brief introduction of the

law governing lead concentrations in drinking water in the United States. Section 3 describes

the data used in this paper. Section 4 presents econometric models. Section 5 presents the

main results and robustness checks. Section 6 offers a back-of-the-envelope estimation from the

benefits of eliminating lead in drinking water, and presents conclusions.
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2 The Lead and Copper Rule

The three main historical sources of lead in the United States are lead paint, leaded gasoline,

and lead in drinking water (Reyes 2015a). The United States EPA (2017) estimates that lead in

drinking water contributes to 20% or more of a United States individual’s total exposure to lead.

Lead in drinking water has larger impacts on very young children and pregnant mothers. For

example, infants who consume mostly mixed formula can receive 40% to 60% of contemporaneous

lead exposure from drinking water (United States EPA 2017). Also, ingested lead (from drinking

water or paint chips) and inhaled lead (from gasoline or paint dust) are absorbed differently by

human body (Agency for Toxic Substances and Disease Registry 2017). Thus, though there is

evidence on the impacts of lead from gasoline and paint, the impacts of drinking water lead may

be different from these.

The regulation governing lead concentrations in United States drinking water is the Lead

and Copper Rule. The rule, established by EPA in response to the 1986 Safe Drinking Water

Act amendments, and regulates lead contamination at households’ taps. It sets a Maximum

Contamination Level Goal for lead of zero, which means there is no safe level of lead in drinking

water, and any amount is considered harmful to human health. Unlike many other well-studied

regulations under the act, the Lead and Copper Rule is a treatment technique rule, without

an enforceable lead level that is allowed in the public water system. The rule specifies a list

of treatment, monitoring, and public education guidelines to ensure that water systems provide

safe water to their customers; it requires water systems to sample water from taps with a

higher chance of having lead in drinking water twice every six months, and to measure the lead

concentrations. A series of actions is triggered when the fraction of samples exceeding 15 ppb

of lead is found to be greater than 10 percent. Actions include examining source water quality,

installing a state designated corrosion control treatment program, public education, and the

removal of service lines that contain lead. All the required actions are aimed to reduce the

amount of lead leaching into the water from different plumbing materials. If a public water

system violates the required monitoring, treatment, and public education guidelines, it triggers

a violation of the Lead and Copper Rule. I use the plausibly exogenous timing of these violations

to estimate the long-run impact of drinking water lead exposure.

The Lead and Copper Rule is one of the most complicated drinking water regulations for

states and drinking water utilities to implement because one must control the corrosivity of
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treated drinking water as it travels through distribution systems to the consumer’s tap (United

States EPA 2016). States and public water systems must have expertise and resources to iden-

tify the sampling locations and to collect and analyze samples correctly. They also need more

resources to identify and install the optimal corrosion control treatments and maintain the effec-

tive operation of the treatments. Given the requirements in resources and expertise to comply

with rule, small systems that may lack these resources are more likely to have violations. Analy-

sis of data from the EPA’s Safe Drinking Water Information System shows that the utilities that

violate the rule serve about 3,500 people on average. Roughly 90% of systems that experienced

violations serve fewer than 10,000 people, which is the upper threshold for the EPA’s definition

of small systems(United States EPA 2012).

The Lead and Copper Rule has two main types of violations: monitoring and reporting

violations, and treatment technique violations. Monitoring and reporting violations occur when

public water systems fail to monitor and report water quality in a timely manner. Such violations

occur when entities fail to test both lead concentrations at consumers’ taps and water quality

parameters, such as pH and alkalinity, in the source water. Treatment technique violations in-

clude failing to submit an optimal corrosion control technique study or recommendations, failing

to install the required technique on time, failing to meet water quality parameter requirements,

failing to replace lead service lines, and/or failing to send out public education materials. 1

Because the protocols are set to ensure that public water systems minimize lead in drinking

water, there are good reasons to believe that violation of these protocols is associated with a

potential threat to public health. Even though violations may not indicate the presence of lead

in a system’s drinking water, they may be correlated with increased lead concentrations. For

instance, when a public water system does not report a lead concentration to the appropriate

state agency, high lead levels can go unobserved. For example, during the Flint water crisis,

the EPA database did not list Flint as having violated the Lead and Copper Rule in 2015;

nevertheless, its underlying lead concentration was already high before September 2015 (Olson

1It is important to note that having lead concentration over the action level does not trigger a vi-
olation. Violations only occur when public systems fail to follow designated treatment techniques and
their associated timelines. Under the Safe Drinking Water Act, public water systems can violate drinking
water standards through health-based violations, monitoring and reporting violations, or public notice
violations (United States EPA 2019a). The health-based violations of the Lead and Copper Rule are
more serious since they mean that systems fail to follow the treatment technique requirements. However,
the non-health-based violations, such as monitoring and reporting violations can also pose threats to
drinking water quality (Fedinick et al. 2017). the public may not know about any exceedance in lead
concentration levels when a public water system fails to monitor water quality.
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& Fedinick 2016). According to a study of 72 Flint households in August 2015, 20% of the

samples had lead levels that exceeded the action level (15 ppb), and the 90th percentile was 30

ppb (Masten et al. 2016).

To demonstrate this correlation, consider the coefficients reported in Table 1, which shows

results from a logistic regression of violations of the Lead and Copper Rule in 3,010 Texas public

water systems from 2006 to 2011; I examine observed lead concentrations as measured in mg/L,

controlling for year and county fixed effects. The results indicate that lead concentration is

positively associated with a public water system having a lead violation. 2. Also it is important

to note that once in violation, public water systems will not return to compliance status for years.

For instance, if a system is in violation of monitoring and reporting lead and copper concentration

at consumers’ kitchen taps, it needs to meet all monitoring and reporting requirements for two

consecutive six-month monitoring periods to be back to compliance (United States EPA 2001).

In my data, the average duration of a violation is 1,115 days, more than three years.

violations of the rule and the current rule itself could also pose environmental justice issues.

Lead service lines are the most important source of lead from drinking water. But under the

current rule, water systems are only accountable for the public portion of the lines’ replacement,

leaving on average $3,000 dollars to homeowners(United States EPA 2021b). Past studies using

data from Washington, D.C., have found strong correlation between full replacement of lead

service lines and family income and race (Environmental Defense Fund 2020). Moreover, when

corrosion control alone is not sufficient, consumers need to take further actions to reduce their

exposure to lead, such as installing water filters or switching to bottled water. Consumers’ ability

to understand and afford these actions poses additional challenges to low income families.

3 Data

I use data from multiple sources. Educational outcome data come from the Texas Education

Research Center, which provides linked individual-level education and workforce administrative

data. Drinking water quality data comes from the EPA’s Safe Drinking Water Information

System data, and EPA’s National Contaminants Occurrence Database. Surface water quality

data is obtained from theWater Quality Portal from the United States Geological Survey (USGS)

2Because the Lead and Copper Rule violation status of some counties does not change during the
time, adding county and year fixed effects shrinks the sample size.
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and the Surface Water Quality Monitoring program of the Texas Commission on Environment

Quality. I also use data from other administrative surveys, such as the American Housing Survey,

to obtain estimates for population, household income, unemployment rates, poverty levels, and

other community characteristics.

3.1 Texas education data

I use administrative data from the Texas Education Research Center for my outcome vari-

ables. The data include all students who ever enrolled in public schools in Texas, and cover

enrollment, standardized test scores, disciplinary action records, high school graduation status,

public secondary school enrollment, and basic demographics such as race, gender, and economic

disadvantage status.

To match the inter-temporal availability of lead concentration data, I estimate the impacts

using data on two sets of individuals: 1) To estimate the impact of lead exposure, I use infor-

mation on those born in Texas from 2006 to 2011 for whom I have third-grade standardized test

scores (I refer to this group as the IV sample). 2) To estimate the impact of violations, I use

information on those born in Texas from 1991 to 2001 who ever enrolled in ninth grade in Texas

(I refer to this group as the DID sample). A key limitation is that the data do not identify an

individual’s date of birth or place of birth. The enrollment data have the year of enrollment,

grade of enrollment, and age as of September first in the year that the student began school. I

identify the list of individuals who enrolled in early education, prekindergarten, or kindergarten

in Texas, and I estimate their year of birth using year of enrollment and age as of September

first. I refer to students using their estimated year of birth, so my first cohort is students who

were born in 1989. The Texas education data have the county in which a school is located, and I

use as a proxy that the county where an individual enrolled in early education, prekindergarten,

or kindergarten as her county of birth.

I consider several outcome variables. First, I use scaled reading and math standardized

test scores in third grade. I also use flags indicating whether an individual passes the relevant

standardized tests, graduates from high school, and enrolls in public university in Texas as

binary outcome variables.

Table 2 reports the summary statistics of the IV sample. The IV models use third-grade

test scores from more than 1 million students born between 2006 and 2011. The average scaled
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reading score is 1,431 points with a standard deviation of 173 points. The average scaled math

score is 1,465 points with a standard deviation of 174 points. I use the scaled test scores because

the scaled scores consider the difficulty level of each individual test question, and they allow me

to compare test results from year to year (Texas Education Agency 2015). About 40% of the

students born between 2006 and 2011 passed the reading standard in third grade, and 44% of

students passed the math standard in third grade. Students enrolled in third grade in Texas are

on average eight years old.

Second, I examine two different long-run outcomes of the DID sample: high school grad-

uation and enrollment in Texas public universities for the early cohorts. Panel B of Table 3

reports the summary statistics for the sample used in the DID model. There are about 1.3

million students born in Texas enrolled in Texas high schools from 1991 to 2001. Though 78.4%

of these students graduate high school, only 25.8% of these students enrolled in Texas public

universities. Of this early cohort sample, 48.9% are females. In the group, 47.6% of these stu-

dents are Hispanic, 35.4% of are white, and 15% are African-Americans. In all, 38.7% students

qualify for free lunch, 8% students qualify for reduced lunch fees, and 7% have other economic

disadvantages.

3.2 Water system and drinking water quality data

Data on public water systems and water quality violations come from the Safe Drinking Wa-

ter Information System from the United States EPA, obtained via Freedom of Information Act

(FOIA) request by prior researchers (Baker et al. 2019) and shared with me. The lead con-

centration data are from the third Six-Year Review pollution occurrence data in the National

Contaminant Occurrence Database, also obtained via a FOIA request.

3.2.1 Safe Drinking Water Information System data

Safe Drinking Water Information System provides the public water system identifier, the wa-

ter system name, number of people served, and dates of the beginning and the ending of each

violation. I focus on violations in public community water supply systems in my study. Com-

munity water systems are a subgroup of public water systems that supply water to the same

population year-round, such as public water utilities providing water to households, comparing
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to water systems belong to schools, office buildings, hospitals or gas stations. Out of 15,736

public water systems in Texas, 49% (7,713) are community water systems. Using the methods

in Baker et al. (2019), I match violations with the data from the EPA for the characteristics

of the water systems, such as name of the systems, counties and states served. Given that the

Safe Drinking Water Information System data obtained from Baker et al. (2019) has violations

through 2014, I use the current Safe Drinking Water Information System database available from

the EPA website to update the data to the second quarter of 2020 and estimate the duration of

violations.

I focus on violations occur from 2006 to 2011 for the younger cohorts ,and violations between

1991 and 2004 for the older cohorts to measure individuals’ early childhood lead exposure. I

generate an indicator variable of having a new violation in county c in year t, and link the

indicator variable with each individual’s birth county and birth year to define early childhood

exposure. During the periods of interest, 1,336 new violations happened in community water

systems in Texas, affecting 5,675,603 individuals. Figure B1 shows the distribution of violations

by year. Most violations happened in 1992, 2010, and 2011. By the second quarter of 2020,

1,236 violators had returned to compliance. The average duration of a violation is 1,115 days,

with a standard deviation of 788 days. The average population served by systems that received

violations is about 3,700. There is a large variation among counties in terms of the number

of violations. On average, each county experienced 60 violations from 1991 to 2011, with a

standard deviation of 91. Each public water system had an average of 1.6 violations during the

same period.

I include both health-based and non-health-based violations in my count. Among the

1,336 violations recorded, 1,305 involve monitoring and reporting (non-health-based) and 31

are health-based violations. In my sample of the older cohort, 19.5% of students who enrolled

in high school were born in counties with new violations recorded in their birth year.

3.2.2 National Contaminants Occurrence Data

The lead concentration data come from the third six-year review of pollution occurrence data

from National Contaminants Occurrence Database. The EPA is required to review each National

Primary Drinking Water Regulation at least once every six years. During this review process,

EPA analyzes compliance monitoring data from public water supplies for regulated drinking
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water contaminants, and it publishes the results. The National Contaminants Occurrence data

collected for the review process provide information on the public water system ID, lead con-

centration, detection limit, and the date of testing. I use the date of testing to merge with a

cohort’s birth year. I use the geographic area data from the Safe Drinking Water Information

System to define the counties served by the public water systems.

The average lead concentration in Texas from 2006 to 2011 is 1.87 ppb with a standard

deviation of 1.7. Figure 1 shows the temporal and spatial variation in lead concentrations. As

Panel (a) of Figure 1 shows, the lead concentration in Texas remains fairly constant over time

with a small decrease in 2009. Panel (b) shows that lead concentration varies largely across

counties. The counties with higher lead concentrations are mostly in central and eastern Texas,

corresponding to the state’s population distribution.

3.3 Surface water quality data

Surface water quality data come from Kuwayama et al. (2020). Chloride and sulfate concentra-

tion in surface waters was collected from multiple publicly available data sources: 1) the Water

Quality Portal, a platform that provides water quality data from the National Water Information

System of the USGS; the EPA STOrage and RETrieval Data Warehouse; and the United States

Department of Agriculture’s Sustaining The Earth’s Watershed-Agricultural Research Database

System. Additional data are collected from the Surface Water Quality Monitoring Information

System provided by Texas Commission on Environment Quality.

Surface water quality observations are obtained at the monitoring station level. I obtain

the watershed boundary database from the Texas Natural Resources Information System, which

is derived from the 1:24,000 USGS National Hydrography Dataset (Texas Natural Resources

Information System 2014). I define the chloride level of a watershed in a given year by calculating

the average chloride concentration of all water quality monitoring stations located within the

watershed, using ArcGIS. I obtain the county boundary shapefile from the United States Census

Bureau (United States Census Bureau 2020) and, and I use ArcGIS to estimate the area of

overlap between a county and a watershed. I then estimate the average concentration of chloride

of a county in a given year weighted by the area of overlap.

There is large variation in the chloride concentration across counties and over time in Texas.

The weighted average chloride level is 190.7 mg/L in Texas surface water with a standard
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deviation of 473.4 mg/L. Figure 2 shows the temporal and spatial variation of surface water

chloride concentrations in Texas. Figure 2a shows the year fixed effect plus a constant from

regressions that control for county fixed effects following Keiser & Shapiro (2019a). As it is

shown in Figure 2a, the average chloride concentration increases from 2006 to 2011. Figure

2b shows the spatial distribution of surface water chloride concentration by county. chloride

concentrations tend to be higher in northwestern and southeastern Texas.

As a robustness check, I calculate the Chloride-Sulfate Mass Ratio (CSMR) as the simple ra-

tio of chloride to sulfate in mass units. The average ratio in Texas is 1.7, suggesting a potentially

high corrosivity of surface water (Belitz et al. 2016).

3.4 Lead pipes data

Data on the presence of lead pipes and cities’ historical water characteristics are from Clay

et al. (2014). The authors collect information on cities’ use of lead pipes from the Manual of

American Water-Works (Baker 1897). Clay et al. (2014) collect data on 172 large and medium

United States cities in 1900. When I match city-level lead data to the county in which each city

is located, only have five counties in Texas have information on lead pipes’ presence in 1900:

Galveston, Harris, Jefferson, McLennan, and Tarrant counties. Figure B3 shows the location of

these counties within the state. Those without lead pipes present in 1900 are shaded yellow,

and those with lead pipes are shaded pink. I also map the top 11 big cities by population in

Texas in 2019 with red circles. As shown in the figure, the historical presence of lead pipes is

not strongly correlated with the current levels of urbanization.

Following Clay et al. (2014a), I use a categorical indicator of the presence of lead pipes. It

is coded as one if the city has pipes made only with lead or a mix of lead and non-lead service

pipes. Table 2 shows that 2% of the people in the younger sample in my study were born in

counties with a historical presence of lead pipes.

3.5 Additional controls

I control for neighborhood characteristics, which include the county-year unemployment rate,

median household income, poverty rate, and population. Unemployment and population data

come from the Bureau of Labor Statistic’s Local Area Unemployment Statistics. Income and

poverty estimates come from the Census Bureau’s Small Area Income and Poverty Estimates
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program.

Summary statistics from tables 2 and 3 show that the average unemployment rates for the

younger cohorts and older cohorts are about 6.5% and 7.3% respectively. The average poverty

rate is 17.9% for the younger cohort and 19.5% for the older cohorts. The median household

income for the younger cohorts is $48,757, and the median income for the older cohort is $31,427.

The average county population is 1,591,577 for the younger cohort, and 1,011,788 for the older

cohort.

I also include a list of weather control variables because the weather may affect the amount

of water people drink and, thus, play a role in the amount of lead they consume, which in

turn could affect educational outcomes. There is also evidence that temperature change over

time affects the biochemical attributes of rivers (Ouellet et al. 2020). Weather data are from

Schlenker & Roberts (2009), obtained from Schlenker’s website, which provides daily minimum

and maximum temperatures and total precipitation on a 2.5 × 2.5 mile grid for the United

States from 1900 to 2019. Using this information, I estimate county-year average maximum

temperature and precipitation in counties.

4 Empirical Strategy

I identify the effect of early childhood exposure to lead from drinking water on school-aged and

young adult outcomes by exploiting variation in the magnitude and timing of exposure among

individuals born in two time frames: between 1992 and 2001, and between 2006 and 2011.

The amount of lead exposure experienced by an individual depends on the year and county

of birth. The identifying assumption is that after flexibly controlling for many observable and

unobservable potential confounders, changes in a county’s drinking water lead concentration in

the birth year affect the educational outcome of individuals born in the particular county.

4.1 Baseline Econometric Model

Following Isen et al. (2017), my baseline econometric model is an OLS regression:

Outcomeaict = β0 + β1logLeadct +Xiθ +Nctψ + γc + αt + εict (1)
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Because I only have lead concentration data from 2006 to 2011, I use the baseline OLS regression

to examine the impact of lead on on the short-term outcomes of individuals born during this

period. Outcomeaict is the scaled third-grade reading or math score, or a categorical variable indi-

cating whether the child failed, passed with the standard scores, or passed with above-standard

scores in one of these tests. logLeadct is the log transformation of average lead concentration

from drinking water of an individual’s birth county in the year of his or her birth. Because the re-

sponse function for lead is a “hockey-stick shape” and unlikely to be linear, I use log-transformed

lead in my analysis (Grönqvist et al. 2020). Xi is a vector of individual characteristics including

gender, race and economic disadvantage status. Nct is a vector of county-level, time-varying

characteristics, including median income, the percentage of residents with income below the

poverty line and the unemployment rate. γc is a birth-county fixed effect that controls for time-

invariant, unobserved characteristics that could affect third-grade standardized test scores for

individuals born in a particular county. αt is a birth-year fixed effect that controls for time-

varying birth-outcome determinants that are common to all individuals born in Texas a given

year. By using these fixed effects, I am comparing individuals born within the same county in

different years. β̂1 is the coefficient of interest and measures the effect that an increase in the

lead concentration in drinking water in the birth year later has on third-grade test scores.

The OLS model assumes that the unobserved determinants of test scores should not covary

with changes in lead exposure conditional on the covariates. However, this assumption can be

violated if there exist any unobserved determinants that also change with lead exposure over

time by county. For instance, neighborhoods with higher level of lead may be in older cities and

have higher population densities. If unobservable factors change differently over time between

old and newer cities, or between urban and rural areas, the OLS model coefficient estimates are

likely to be biased.

Moreover, people from certain racial groups and economically disadvantaged families are

more likely to be exposed to higher levels of lead from drinking water (Banzhaf et al. 2019,

Marcus 2020). Though I use birth-county fixed effects to capture time-invariant characteristics,

this identification strategy may still suffer from omitted variable bias. Locations with different

levels of lead may also have different underlying conditions such as average income or crime rates.

People with different backgrounds or preferences for clean water might sort into locations that

have varying levels of lead concentration (Deschenes & Meng 2018). To address concerns about
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endogenous lead exposure, I use the three identification strategies: the plausibly exogenous

variation from chloride levels in surface water, the presence of lead pipes in 1900 (Clay et al.

2014, Stets et al. 2018), and the exogenous timing of violations.

To analyze the endogenous exposure to lead, I use the directed acylic graph (DAG) (Figure

A1) to explain my identification strategy (See Appendix A). I control for family income, race and

ethnicity, neighborhood income, population, and poverty to remove bias. Also, I use exogenous

variation in surface water chemistry, the presence of historical lead pipes, and the timing of lead

violations to discern a causal relationship between drinking water lead exposure and educational

outcomes.

4.2 Instrumental variables models

Prior research has shown that surface water trends in chloride affect corrosivity in water distri-

bution systems, further affecting drinking water quality (Stets et al. 2018). I use two different

instruments that exploit this fact: the level of chloride in source water in an individual’s birth

county year, and the interaction of surface water chloride and the presence of lead pipes in an

individual’s birth county in 1900. Surface water chloride level is a valid instrument for the fol-

lowing reasons: First, chloride is strongly related to elevated lead concentration in the drinking

water. Past studies have found that high chloride concentration promotes galvanic corrosion of

lead service lines and lead solder in water distribution systems (American Water Works Asso-

ciation 1996, Edwards & Triantafyllidou 2007, Willison & Boyer 2012, DeSantis et al. 2018), a

water chemistry issue that played a role in the ongoing crisis in Flint. 3 Similarly, in Wash-

ington, D.C., from 2004 to 2006, where the city’s water system switched from free chlorine to

chloramine as a disinfectant, the failure to control corrosion caused elevated lead levels (Edwards

et al. 2009).

Second, surface water chloride concentrations strongly correlate with chloride levels in fin-

ished drinking water. chloride is a naturally occurring ion and mostly exists in the form of

sodium chloride in water. There are no federal or state primary health-based drinking water

standards for chloride; there is only an advisory standard for aesthetic purposes (e.g., taste)

3When the water authority in Flint switched its water source from Lake Huron to water from the Flint
River, the high level of chloride in Flint river was not properly treated to optimize corrosion control; Flint
water was found to have lead concentrations of over 5,000 ppb, more than 400 times the action level of
15 ppb (Pieper et al. 2017, 2018, Torrice 2020).
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(United States EPA 2003). Though it is possible that people drink less water if the water is

too salty from a high level of chloride, the average level of chloride in my data is lower than

the standard that the EPA identifies as a concentration sufficient to likely cause a salty taste

in drinking water (New Hampshire Department of Environmental Services 2010). Moreover,

typical drinking water treatment techniques, such as alkalinity or pH adjustments, do not re-

move chloride, and drinking water treatment plants do not desalinate; therefore, high chloride

concentrations should be conserved even after treatment (Stets et al. 2018). It is important to

note that I am using the surface water chloride concentration because finished drinking water

chloride sources are not available.

Third, chloride is not likely to be correlated with educational outcomes other than by affect-

ing lead concentrations. Chloride is an essential nutrient for human health. But, based on tap

water consumption of 2 L/day, water would typically contribute only 2.5% to 5% of the dietary

salt goal (United States EPA 2003). Because the intake of chloride from drinking water is only a

small portion compared to other pathways, it is not likely to affect human health or educational

outcomes.

The identifying assumption is that after controlling for individual and neighborhood char-

acteristics and fixed effects, changes in surface water chloride of a county are unrelated to the

changes in education outcomes of people born there except through the changes in drinking

water lead concentration. One threat to my identification is that the change in the chloride

across counties over the years could relate to factors that would affect education outcomes that

my models do not control for. For example, anthropogenic sources of chloride include but are

not limited to the use of fertilizers and irrigation in agricultural fields, road salts, and wastew-

ater discharge or runoff from urban areas (Panno et al. 2006, Steele & Aitkenhead-Peterson

2011). As a result, the change in surface water chloride could be correlated with the change

in the degree of urbanization, which may be correlated with educational outcomes later in life.

However, I believe this is less of a concern given that chloride concentrations in source water are

also increased by the use of irrigation and fertilizers in agricultural fields. Using data on surface

water quality from 1982 to 2012, Stets et al. (2020) find that freshwaters are being salinized

rapidly in all kinds of landscapes in the United States. Moreover, one major source of chloride

in the United States is from the use of road salts for melting snow, which is less common in

Texas. But because of the threat to identification, I use this instrument as a robustness check.
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I use the interaction of birth-year surface chloride levels and the presence of lead pipes in

1900 as my preferred instrumental variable. For each individual, I use the data from Clay et al.

(2014) on lead pipes to determine if that individual’s water system historically had lead pipes.

While Clay et al. (2014) data only have information on the presence of lead pipes in only 172

large and medium-sized cities, I geocode the cities to the counties of location. I emphasize that

my instrument is not the presence of lead pipes but the interaction of surface water chloride and

the historical presence of lead pipes. While the temporal and spatial variations in chloride levels

may be affected by the changes in the degree of urbanization and agricultural activity over time

and across counties, the presence of lead pipes in 1900 is correlated with the presence of lead

pipes in later years, but is less likely to be correlated with the urbanization and agricultural

activities of counties during my sample period. The identifying assumption is that chloride

levels in surface water are more predictive of lead concentration changes in areas where there is

a historical presence of lead pipes.

The first-stage regression in the two-stage least square (2SLS) estimator is as follows:

Leadict = α0 + α1Zict +Xiθ +Xctψ + γc + ηt + εict (2)

where Leadict indicates the lead concentrations in drinking water. In the preferred IV, I use

the concentration of drinking water lead in a county c and year t when an individual i was born

as the dependent variable and use the interaction of surface water chloride and lead pipes as

the Zict. I regress lead on the interaction of weighted average chloride concentration of surface

water and the historical presence of lead pipes in an individual’s birth county and birth year.

For the weighted average chloride concentration, I first calculate the average chloride level of a

watershed at a given year. Then I estimate the average chloride concentration of a county using

the overlapping area between a county and a watershed as weights. In my robustness check, I

use an indicator of lead concentration exceeding the regulation action level in a county c and

year t when an individual i was born as my dependent variable.

In the second stage, I use the predicted indicator of lead from equation (2) in the place of

actual lead concentration.

Outcomeict = δ0 + δ1 ̂Leadict +Xiθ +Nctψ + γc + ηt + εict (3)
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The coefficient of interest in equation (3) is δ1, which measures the effect on third-grade stan-

dardized tests that stem from lead concentrations in an individual’s birth county in the year

of her birth. The IV in robustness check measures the effect on the same tests that stem from

an individual living in a county that, at the time of her birth, had lead concentrations that

exceeded the level that required safe drinking water actions.

4.3 Using rule violations to examine long-run outcomes

While the IV approach can solve potential endogeneity problems, it is constrained by the avail-

ability of lead concentration data, so I cannot use it to study the effect of lead on long-run

outcomes, such as the high school graduation rate. Thus, for longer-run outcomes, I use plausi-

bly exogenous variation from the timing of water quality violations (Currie et al. 2013, Marcus

2020), and I employ a fixed-effects model to estimate impacts of childhood lead exposure from

drinking water on individuals in Texas. I explore the effect of lead violations on individual

outcomes using the following specification:

Outcomect = β0 + β1LCRict +Xiθ +Nctψ + γc + ηt + εict (4)

where the outcome is the high school graduation rate and rate of Texas public universities.

LCRct measures if the cohort experiences a new lead violation in their birth county c in the

birth year t. Similar to Equation 1, I also control for individual characteristics, county-of-birth

fixed effects, and year-of-birth fixed effects. With the fixed effects, I compare children born in

counties without a new lead violation to children born exposed to a new lead violation. β1 is

the coefficient of interest, which measures the effects of exposure to violations on the outcome

of interest. Standard errors are clustered by county.

One key advantage of this approach is that it allows me to use data for all the cohorts

from 1992 to 2011, and to examine the impact of lead on long-run outcomes, such as high

school graduation. The assumption for this specification is that the variation in lead violation

exposure is “as good as random.” The assumption is likely to hold with the county fixed effects

for the cross-sectional difference between counties that might be related to violations and the

educational outcomes of children. For instance, individuals born in poor counties with worse

public schools may also have a higher probability of exposure to violations since the water
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systems that serve their homes may have less funding to test lead concentrations in a timely

manner. However, in the presence of time-varying unobservable confounders, my estimate will be

biased. For example, violations may happen because a water system’s funding is reduced during

the financial crisis, which could also affect the children’s health and educational outcomes. If

this is the case, I may overestimate the impacts of lead violations.

Thus, I use a DID estimator for this specification. As mentioned before, the Lead and Copper

Rule is a treatment technique rule. All the technical requirements in the rule are designed to

reduce the likelihood of lead exposure in drinking water. From the IV models, I estimate the

impacts of lead from drinking water. The DID estimator with this specification evaluates the

effectiveness of the policy that aims to reduce lead levels from drinking water.

5 Results

5.1 OLS results

Table 4 shows OLS estimates from equation (1), where panel A presents results using the scaled

standardized test scores and panel B presents results where the outcome variable is an indicator

of whether an individual meets the standard. I add control variables from left to right. Columns

1 to 5 show the OLS estimates of the impact of lead concentration on reading scores, and columns

6 to 10 show the estimated impacts on math scores. Columns 1 and 6 include only birth county

and birth year fixed effects. Columns 2 and 7 show the results of adding individual controls,

including gender, race, and economic disadvantage status. Columns 3 and 8 add controls for

additional neighborhood characteristics, such as median household income, unemployment rate,

and the poverty rate of the birth county in the birth year. I add county-by-year-level average

maximum temperature and precipitation in columns 4 and 9. Columns 5 and 10 are robustness

checks by including birth-county-by-birth-year trends.

Columns 1 to 5 in panel A of table 4 suggest that the lead concentration in the year of birth

reduces third-grade reading scores. The estimated coefficients on log(lead) are fairly consistent

as more control variables are added 4. Because I do not have controls that have been found highly

predictive of child outcomes, such as maternal education, birth order, birth weight, or maternal

4I also checked the asinh transformation of lead as a robustness check and it did not change the main
results (Table available upon request)
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education, the consistent magnitude of coefficients shows similar results with the past literature

and suggests that a set of basic control variables may be sufficient to control for confounding bias

(Aizer & Currie 2019). The coefficient in column 1, -2.335, implies that a 1% increase in lead

concentrations in drinking water decreases the third-grade standardized reading scores by 0.023

points. This change seems small. But recall that the mean lead concentration in Texas (1.856

ppb) is well below the action level (15 ppb). Even so, the findings show that if the average lead

concentration in Texas were to increase to the 15 ppb threshold to trigger regulatory action, the

mean reading scores in Texas would decrease by 16.7 points (719 times 0.023), or 1.16 percent

of the average reading score. Past studies have found that a mean increase in blood lead levels

of 10 µ g/dL is associated with a decline of average third and fourth-grade English Language

Arts scores by 2.6 percentage points in Massachusetts (Reyes 2015b) and a decline in third-grade

reading scores by 0.335 points in Rhode Island (Aizer et al. 2018). Because my study uses lead

concentrations in drinking water, not blood lead levels, it is hard to compare these two measures.

However, the fact that I find a statistically significant negative impact at levels that are two

orders of magnitude smaller than the threshold that compels federal action is notable.

Columns 1-5 in panel B suggest mixed results for the impact on third-grade math scores

of birth-year exposure to lead in drinking water. The estimated lead coefficients are of the

expected signs but only weakly significant when I include birth-county fixed effects, birth-year

fixed effects, and individual controls; the estimated lead coefficients are insignificant in the other

specifications. Estimated coefficients are also smaller than those in the reading models. If we

interpret the insignificant column 1 coefficient, a one percent increase in the drinking water lead

concentration is associated with a decrease in third-grade math scores of 0.012 points. The

smaller impact on math scores is consistent with the epidemiological literature, which suggests

that lead has a stronger relationship with verbal functioning (Bellinger et al. 1992, CDC 2004).

Panels C and D of table 4 show the regression results using Equation (1) where the dependent

variable is an indicator variable set equal to one for individuals that meet Texas standards for

reading and math. Because the dependent variable is an indicator, I use linear probability

models. Results are consistent with those from panel A. Exposure to lead in drinking water in

the birth year reduces the probability of passing reading tests; the finding is robust to controlling

for various confounding factors. Impacts on the likelihood of passing the third-grade math test

are not robust, and there is one counter-intuitive, positive and weakly significant coefficient in
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column 5 of panel D.

5.2 Instrumental variables results

Table 5 shows the first-stage results from using the instrumental variables. Panel A reports the

first stage using the interaction between chloride and the historical presence of lead pipes as the

instrument for lead concentrations in drinking water. Panel B reports the first stage of chloride

as an instrument for exceeding the federal action level of lead regulation. . Columns 1-5 are

estimated using equation (2), where I add control variables as one moves across columns.

The first-stage estimates using the my preferred instruments are in panel A of Table 5. The

interaction of source water chloride and historical lead pipes are all positive and significant,

suggesting an association between surface water chloride and lead pipes with the drinking water

lead concentration. The coefficient in column 4 suggests that, holding individual and neigh-

borhood characteristics constant, in cities with lead pipes in 1900, the lead concentration in

drinking water increases by 0.0015 ppb (0.08% of the average lead concentration) for each 1

mg/L (0.5% of average chloride level) rise in the source water chloride concentration.

Similar to the first-stage results for my preferred instrument, the coefficients in panel B are

also all positive and significant. The coefficient on mean chloride level in column 4 suggests that

holding individual characteristics, neighborhood characteristics, and weather constant, results

in a 0.0002 percentage point increase in the probability that a one-unit increase in surface water

chloride concentrations occurred in one’s birth county in one’s birth year.

I also report the first-stage F statistics and the Sanderson-Windmeijer (SW) first-stage

under-identification test in Table 5.The F statistics for the my preferred IV is well above 10,

suggesting that the instrument is unlikely to be a weak instrument(Stock & Yogo 2005). The F

statistics are lower than 10 for using chloride as an IV, suggesting that this instrument could be

a weak instrument. The SW chi-square underidentification tests suggest that both instruments

are relevant. The overidentification test of both instruments (Hansens J statistics) is zero,

suggesting both models are just identified.

Table 6 presents regression results using the interaction of surface water chloride concen-

trations and lead pipes. The coefficients I present here are 2SLS estimates. Panel A of Table

6 shows estimates of lead impact on third-grade reading scores with additional controls added

across the columns. Panel B reports the impacts of drinking water lead concentration on math
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scores.

In all the specifications, the average lead concentration has a negative and statistically

significant impact on third-grade standardized test scores in both subjects, except for column

4 of panel A. Contrary to previous findings, the impact of lead seems to be larger for math

scores than for reading scores. Column 5 reports the effect of lead on third-grade reading scores,

controlling for individual and neighborhood characteristics, and a birth-county-by-year trends.

The coefficient suggests that a one ppb increase in average lead concentration is associated with

a 3.911 point decrease in third-grade reading scores. If the average lead concentration in drinking

water were to increase to 15 ppb, a 13 ppb raise from the current average lead concentration in

Texas, the associated decrease in third-grade reading scores would be 50.8 points, 3.6 percent

of the average reading scores. The magnitudes of the IV estimates are similar to those from the

OLS estimates. Column 5 of Panel B shows the equivalent estimates of lead impact on third-

grade math scores. A one ppb increase in the drinking water lead concentration is associated

with a 5.198 point decrease in math scores. If the average lead concentration increase to 15 ppb,

the average third-grade math scores would decrease by 4.6 percentage points.

Panels C and D of Table 6 present IV results using the indicator for whether an individual

meets the reading and math standards, using the second instrument (chloride × lead pipes).

Since these dependent variables are dummy variables, the models reported here are linear prob-

ability models. I report results for reading standards in panel C and results for math standards

in panel D. Coefficients suggest that higher lead concentrations in the drinking water in the

year of one’s birth has robust, significant negative impacts on students’ probability of passing

third-grade reading and math standards. The coefficient in column 4 of panel C suggests that a

one ppb increase in average lead concentration leads to a decrease in the probability of meeting

the third-grade reading standard by 0.8 percent, holding all else constant. From column 4 of

panel D, a one ppb increase in lead concentration is associated with a 1.74% decrease in the

probability of passing the math standardized test. The coefficients on the lead are negative

but insignificant in columns 5 of both panels. This result may be caused by the fact that my

data include only five counties with lead pipes; as a result data, the birth-county-by-year trend

absorbs a lot of variation.

Given the robustness of the results, the IV strategy using the interaction of surface chloride

concentration and presence of lead pipes may be the preferred approach to estimate the impact
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of lead in drinking water. However, it is important to note that the sample size is significantly

smaller than the OLS sample as it includes only data for locations that had lead pipes in 1900.

In Texas, this information is available for only five counties. Even though I find consistent

negative impacts of lead in drinking water on academic performance, the IV sample may not be

representative of the impact of lead statewide. For these reasons, in the next section, I use the

fixed effect model to examine the long-run effect of lead — an approach I plan to apply to the

whole United States in the future.

5.3 Long-run impacts of lead violations

The results presented so far are based on the availability of lead concentration data and the IVs.

However, given that I only have lead concentration data from 2006 to 2011, I cannot estimate the

long-run impacts of lead exposure with these strategies because children born in that time frame

have not yet graduated from high school. Since the lead violations have plausibly exogenous

timing, I use a DID design to exploit changes in lead violation status across counties to examine

this long-run question. With the DID design, I compare the difference in outcomes between

cohorts born in counties with and without violations.

The key assumption underlying this identification strategy is that, absent differences in vi-

olations, treatment and control counties would have the same trends in high school graduation

rates. To test the validation of the parallel trends assumption, I regress the high school grad-

uation on the interaction of violation status in one’s birth year and in the years since the lead

violation initially occurred, including birth-county and birth-year fixed effects. The estimates of

the event study nonparametrically identify treatment effect over time and also test the parallel-

trend assumption. Figure B4 shows the coefficient for the interaction term with one year before

the violation as the reference year. In the pre-period, the coefficients of violation are small and

insignificant, suggesting that the parallel-trends assumption holds. The treatment is negative

and statistically significant in periods T+1 and T+2, suggesting that a violation that persists

for two years has negative impacts on high school graduation rate. It is important to note that

the coefficients of years T-8 to T-6 and T+4 to T+6 have large standard errors. This is because

the majority of violations happened in 1992 and lasted for an average three years; as a result,

the coefficients for the years before T-6 and after T+4 are less precisely estimated.

I estimate the DID model using the cohort born between 1990 and 2001 enrolled in a Texas
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public school in ninth grade. Table 7 presents the regression results with Equation (4). Panel A

shows results from estimating the impacts on high school graduation that stem from the presence

of lead in drinking water. Panel B shows results for public university enrollment in Texas.

Results in panel A suggest that a lead violation in the birth year has a significant and robust

negative impact on the high school graduation rate. Column 4 suggests that, holding all else

constant, students experiencing a lead violation in the year of their birth are 0.6 percent less

likely to graduate high school. By contrast, panel B results suggest that, a violation in one’s

birth year does not have an impact on public university enrollment in Texas. It is also important

to note that the Texas education data only have information on an individual’s enrollment in

public universities in Texas. Therefore, a child who enrolls in a private university in Texas, or

any university outside of the state is not included in these data. Another factor concerns the Top

Ten Percent rule used in the state, which guarantees entrance to a Texas public university to all

those who graduate in the top 10 percent of their high school class. This rule may also attenuate

my coefficient on public university enrollment. My estimate may be an underestimate of the

true effect of early exposure to drinking water lead treatment violation on college enrollment.

It is important to note that I only include those who were born with a new violation in

their birth county in my main DID sample. Given that the average violation in Texas lasts

about three years, and that water systems are required to notify the public about the violation,

parents of individuals who were born in the second or third year of a violation may be aware of

the potentially high level of lead in their drinking water, and they may take avoidance actions.

In panel C of Table 7, I use the sample of people who are born with any year of a lead violation.

The coefficients in panel C are smaller and less robust, consistent with potential mitigation

methods may be taken for the cohorts born in counties that had existing violations in that year.

5.4 Heterogeneity in impacts of lead exposure

I examine the heterogeneous effects of lead exposure by individual demographics, such as gender

and race, using regressions for my preferred IV strategy and the DID strategy. I include an

interaction term of my key treatment variables with indicators for race, gender, and economic

status. Since the models contain interaction terms between instrument/treatment and the group-

specific dummy variable, I also include the group dummy variables in the regressions, so the effect

on each group is the sum of these two coefficients. Figure 3 reports the regression coefficients
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on the interaction term of treatment variable and an indicator of race, gender and economic

background groups from 30 separate regressions.

The dependent variables are third-grade reading scores, math scores and high school grad-

uation rates. Figure 3a uses the IV sample, and 3b uses the DID sample. Figure 3a reports

estimates from reduced-form models that include additional interaction terms between the sec-

ond instrument and a group-specific dummy variable. I also report the group-specific dummy

variable and the instrument variables separately in the regression models. Figure 3b reports

estimates from the DID model with the additional interaction term of the lead violation ex-

posure at birth and the group dummy, a group-specific dummy and lead violation status at

birth. I also include birth-year fixed effects, birth-county fixed effects, and control for individual

characteristics, neighborhood characteristics, and weather. Table B2 presents the coefficients in

the regression tables.

From the Figure 3a, the interaction coefficient is significantly negative for female students

in both third-grade reading and math scores, suggesting that female students’ third-grade stan-

dardized test scores may be more vulnerable to lead exposure. However, Figure 3b suggests that

there do not seem to be heterogeneous impacts on high school graduation rates by gender.

Similarly, Figure 3a also suggests that there may be significant heterogeneous treatment

effects on later educational outcomes across different racial groups. White, African-American,

Asian, and Hispanic students are disproportionately impacted by lead exposure in the year of

birth, as indicated by both third-grade reading and math scores. However, the only persistent

negative educational impact of drinking water exposure (measured by high school graduation

rates) surfaces among African-American students (Figure 3b).

Figure 3 further shows that children born to families with economic disadvantages are also

disproportionately affected by exposure to lead in their drinking water during the year of their

birth. But the negative impact seems also to fade out when they graduate from high school.

These results provide suggestive evidence that early pollution exposure may fade out in the

long-run, possibly as the result of interventions (such as improved nutrition) (Jacob et al. 2010,

Chetty, Hendren & Katz 2016).

Among all the 30 regressions, I find persistent negative impacts of lead exposure at birth

on long-run educational achievement in African-American students. Coefficients from Table B2

shows that, conditioning on lead exposure, African-American students achieve 2% and 1% of a
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standard deviation lower scores on third-grade reading and math, respectively. They are also

7.4% less likely to graduate from high school.

5.5 Robustness checks

In this section, I explore the robustness of my results to a variety of additional tests and speci-

fications.

5.6 Using surface chloride concentration as an instrument

Table 8 reports second-stage results from the chloride-only IV models. Since the F statistics from

the first stage are weak, rather than using the 2SLS, I use the limited information maximum

likelihood (LIML) estimator, which is more robust to weak instruments (Stock et al. 2002). The

LIML results of my preferred instrument are identical to the 2SLS results (see Table B1). I

partial out the fixed effects and controls since the covariance matrix of orthogonality conditions

is not of full rank, and the overidentification tests are infeasible when clustering standard errors

(Baum et al. 2007).

Panel A presents the effects of lead concentrations exceeding the federal regulatory level on

third-grade scaled reading scores, and panel B present the effects on scaled math scores. Panels

C and D also present effects of exceeding federal lead regulatory levels on meeting reading and

math standards. Across panels, there is a consistent significant and negative impact on third-

grade reading test results of lead exposure in drinking water in one’s birth year. The coefficient

in column 4 of panel A suggests that after controlling for individual, neighborhood, and weather

characteristics, having a lead concentration in drinking water over 15 ppb is associated with an

18.3-point decrease in third-grade reading scores.

5.6.1 Including median house age as control

A common pathway of lead entering into children’s bodies is through lead paint and the contam-

inated dust and soils it generates (Lanphear & Roghmann 1997, Jacobs et al. 2002). Though

lead paint was banned in 1978, older homes are more likely to still have lead paint and lead

pipes. To control for the potential presence of lead paint, I include the median home age in the

birth county in the birth year as an additional control variable in the IV strategy and report

the coefficients in Table 9.
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Column 1 of Table 9 reports the first-stage result using the interaction of surface water

chloride concentration and the historical presence of lead pipes as an instrument. Columns 2

and 3 show results for third-grade reading scores, and columns 4 and 5 report results for math.

All coefficients are estimated with birth-year fixed effects, birth-county fixed effects, and controls

for individual characteristics, neighborhood characteristics, and weather.

Columns 2 and 4 show results consistent with previous results indicating that lead exposure

during one’s first year of life significantly reduces third-grade reading and math scores. Relative

to the baseline results without median home age controls, the effect of drinking water lead on

third-grade scores is slightly larger.

5.6.2 Including county trends

To address the concern that broad trends at the county level might be influencing my results,

columns 5 of tables 8, 6 and 7 report additional results including county-by-year trends. The

results are of the same sign and similar magnitude to the main results.

5.6.3 Controlling for water system size

Violations are more likely to happen in small public water systems. People born in house-

holds served by small these small systems may differ from people born in households served

by larger systems in unobservable ways. As a robustness check, I estimate the IV model using

the interaction between chloride concentration and lead pipes, and controlling for the sum of

the population served by public water systems and the number of small and very small systems

in a county. Table 10 reports the results, where columns 1 and 2 control for the population

served by public water systems, and columns 3 and 4 control for the number of small and very

small systems. Columns 1 and 3 are results from specification 4, while columns 2 and 4 add

birth-county-by-birth-year trends. Comparing the coefficient estimates in Table 10 to those in

Table 7 shows that controlling for the size of the systems has little effect on the educational

impact of violations in one’s birth year.

5.6.4 Using the Chloride-Sulfate Mass Ratio (CSMR)

The last robustness check uses the chloride-sulfate mass ratio instead of chloride as an in-

strument. While high chloride can promote solubility of lead in drinking water, sulfate may
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inhibit corrosion of lead-bearing materials both in isolation and in galvanic connections to cop-

per(Edwards & Triantafyllidou 2007). Environmental engineering experiments and utilities’

practical experience have shown that this ratio may also be an important indicator to control

lead leaching into potable water (Edwards & Triantafyllidou 2007). In tables 12 and 13, I report

results from a set of IV models using this alternative instrument, interacted with the historical

presence of lead pipes.

In the first stage (Table 11), the ratio has a consistently positive impact on lead concentration

and indicator of exceeding lead regulatory level. The F statistics on the ratio suggest that the

interaction of the ratio and lead pipes is a strong instrument, but the ratio alone, like chloride

is a weak instrument.

Table 12 reports results using the interaction of the chloride-sulfate mass ratio and the

historical presence of lead pipes as an instrument. Table 13 reports 2nd stage results using the

ratio alone as an alternative instrument. Panels A and C report results on reading, and panels

B and D report the results on math. Column 1 reports the coefficient estimates using only

birth-county and birth-year fixed effects. Column 2 includes individual-level characteristics as

controls. Column 3 includes neighborhood controls including poverty rate, unemployment rate,

and median household income. Column 4 weather control variables. Column 5 also include

birth-county-by-birth-year trends. Similar to the results using chloride as an instrument, lead

concentration exposure in one’s birth year has consistent negative and significant impacts on

third-grade standardized tests results.

6 Discussion and Conclusions

This study investigates the educational impacts of drinking water lead exposure in early child-

hood. Using education and water data from Texas over a period from 1991 to 2011, I exploit

variation in lead concentrations. I examine both changes in surface water chloride concentra-

tion, which affects treated drinking water chemistry, and the historical presence of lead pipes.

I also exploit the plausibly exogenous timing of Lead and Copper Rule violations of measures

intended to limit exposure to lead by comparing the outcomes of children living in locations

that experienced lead-related water violations in their birth year, with the outcomes of those

who did not experience this.
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My results provide empirical evidence that lead exposure through drinking water in the

birth year has significant negative impacts that last into adulthood — even when exposure is

well below the federal action level set for lead in drinking water under provisions of the Safe

Drinking Water Act. Specifically, I find that a 1-ppb increase in lead concentration in drinking

water is associated with a 4-points decrease in reading scores and 5.2-point decrease in math

scores in the third grade. Given the average concentration of lead reported is about 2 ppb,

eliminating lead in Texas could increase average reading scores by 52 points (30 percent of a

standard deviation) and math scores by 65 points (37 percent of a standard deviation). These

are relatively modest gains given that the average scores of both tests are around 1,400, but

the magnitude is actually bigger than the estimates derived by using blood lead levels in the

existing literature (Aizer & Currie 2019). Eliminating lead in drinking water is also associated

with an increase in the probability of passing reading tests (0.8%) and math tests (1.7%) in

third grade. These estimates are also consistent with the existing literature using blood lead

levels in both economics and epidemiology (Aizer & Currie 2019). Importantly, the effects that

I estimated occur even at locations and times when the lead concentrations in drinking water

were, on average, quite low and below the levels considered “permissible” under the current

regulation.

The findings also suggest that violations of the federal measures that regulate lead in drinking

water that occur during a student’s year of birth lead to a lower probability of graduating from

high school. Results suggest that being born in a county with a new lead-related drinking water

violation is associated with a 0.6% decrease in the probability of graduating from high school.

A high school drop-out’s weekly income is $606 — $143 less than the weekly average income of

those who have high school diplomas (United States Bureau of Labor Statistics 2019). Thus,

a lead violation that affects drinking water in the first year of life may be associated with a

$45 decrease (a 0.14% decrease) in average annual income through its impact on high school

graduation. For the older cohort in my sample, the benefits in terms of increased income that

would result from having eliminated such violations would be around $12 million annually in

Texas. My estimates are smaller than the only existing study of the long-term impact of lead,

which suggests reducing childhood blood lead levels from 10 µg/dL to 5 µg/dL in the United

States would have a benefit of around $198 million annually (Grönqvist et al. 2020). However,

it is important to note that my study uses violations that are associated with very low levels of

30



lead concentrations. Given the 1.85 ppb in lead, concentrations in my student represent only

about 4% of the 5 µg/dL reduction mentioned in Grönqvist et al. (2020); despite these smaller

concentrations that are the source of lead exposure, my findings show that eliminating such

violations would confer sizeable economic benefits.

If the $45 annual income loss persists over the life cycle, an individual’s lifetime wage loss

alone from the occurence of such violations during the first year of life is about $900 5. However,

recognizing that an individual’s wage is unlikely to be constant through the life cycle, Carnevale

et al. (2011) estimate that during their working lives workers with a high school diploma on

average earn $331,000 more than those who do not have a diploma. Exposure to a violation of

the federal Lead and Copper Rule during the first year of life, thus suggests a present discounted

value of lifetime earnings of about $2,000. Given that 20% of individuals in my sample are

exposed to new violations during the year of birth, the loss in lifetime earnings ranges from

around $241 million to $535 million in Texas. While I do not have an accurate estimate of

how many people were exposed to violations during the first year of life during the 1991 to

2004 period, one can generalize from my estimates by assuming that the rate of the population

exposed in Texas is the same as that of the rest of the country. The average number of births in

the United States is around 4 million per year; thus, roughly 56 million people were born during

the 1991 to 2004 period. If 20% of them (11.2 million) were exposed to a new lead violation

during that first year of life, the annual loss of income would be about $504 million. The loss in

lifetime earnings would be around $10 billion to $22 billion.

My estimates are higher than those calculated to estimate the economic benefits for children

from the current regulations as estimated by the EPA. The findings of this paper thus support

long-term revision of the Lead and Copper Rule and its economic ramifications. In the long-run

revision of the rule under consideration, the EPA estimates the economic benefit of changes by

simulating the impact on blood levels, and calculating how much IQ would change as a result of

ensuring reductions in lead concentrations in the blood. The EPA then calculates the monetary

value of IQ lost as the result of lead exposure. According the EPA estimate, the benefits of

current rule is around $220 per child annually (United States EPA 2019b). My analysis suggests

that reducing the number of violations through more investment and better enforcement can

lead to even higher economic benefits per child.

5I assume an individual can work from 18 to 78 and use a discount rate of 5%.
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I also find that female children and children from African-American families and families

with economic disadvantages are more vulnerable to lead exposure, in line with the existing

literature (Chetty, Hendren, Lin, Majerovitz & Scuderi 2016, Heckman & Karapakula 2019,

Grönqvist et al. 2020). The findings suggest that early childhood lead exposure may be one

contributing factor to the racial-achievement gaps in the United States.

President Joe Biden’s infrastructure bill includes $15 billion to replace lead pipes and service

lines across the country. A back-of-the-envelope calculation based on the EPA’s estimate of

average replacement costs per line ($4,700) and on the assumption of 6 million to 10 million

lead service lines across the country, suggests the costs could range from $28 billion to $47

billion (Campbell & Wessel 2021). The benefit from an increase in lifetime earnings alone would

potentially cover the cost of replacing all lead pipes in the United States. Since this is just one

slice of potential benefits from eliminating lead from drinking water, the total benefits, including

benefits such as reduced crime rates, are likely much larger.

This study provides the first empirical evidence that early childhood exposure to lead from

drinking water well below levels that trigger regulatory action has a significant impact on educa-

tional outcomes. Though my investigation of five Texas counties which have relatively low lead

concentrations may not provide a comprehensive estimate of wider impacts across the country,

the approach used in this paper can be employed across a broader geographic area. This is a

direction for my future research.

Affiliation: Center for Business and Public Policy, Gies College of Business, University of

Illinois at Urbana-Champaign
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A Appendix A: DAG figure

To analyze the endogenous exposure to lead, I use the directed acylic graph (DAG) (Figure A1)

to explain my identification strategy. DAG is a graphic presentation of the causal effects using

nodes and arrows (Cunningham 2021). Nodes represent random variables created by some data-

generating process and arrows represent a causal effect between two random variables moving in

the direction of the arrow. In Figure A1, I have a list of variables including: drinking water lead

exposure at birth, educational outcomes, lead pipes, water treatment, source water chemistry,

geology, neighborhood characteristics (public funding, neighborhood resources, urbanization),

and individual characteristics (family income, race and ethnicity). These variables are connected

by arrows representing the causal relationship among them.

Figure A1: DAG of drinking lead impacts

Notes: Figure shows the DAG of drinking water lead impact on educational outcomes.

There are a list of direct and indirect paths between drinking water lead exposure and later

educational outcomes:

1. Drinking water lead at birth −→ Educational outcome (direct path 1)

2. Drinking water lead at birth ←− Lead pipes ←− Family income, race and ethnicity −→

Educational outcomes (backdoor path 1)

3. Drinking water lead at birth ←− Lead pipes ←− Neighborhood characteristics (public
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funding, resources and urbanization) ←− Family income, race and ethnicity −→ Educa-

tional outcomes (backdoor path 2)

4. Drinking water lead at birth←−Water treatment←− Neighborhood characteristics (pub-

lic funding, resources and urbanization) ←− Family income, race and ethnicity −→ Edu-

cational outcomes (backdoor path 3)

5. Drinking water lead at birth ←− Water chemistry ←− Urbanization ←− Family income,

race and ethnicity −→ Educational outcomes (backdoor path 4)

6. Source water chemistry and geology −→ Water chemistry −→ Drinking water lead at

birth −→ Educational outcomes (direct path 2)

There are six paths between drinking water lead exposure at birth and later educational

outcomes. The first path is the direct causal relationship between drinking water lead exposure

at birth and educational outcomes. Paths 2 through 5 are backdoor paths, which means that the

correlations between lead exposure and educational outcomes are driven solely by fluctuations in

variables such as family income and neighborhood resources. Path 6 is another direct path from

drinking water lead exposure to educational outcomes. This is different from the first direct

path because this path is driven by changes in source water chemistry and geology, which are

unrelated to backdoor variables.

Lead enters drinking water when water corrodes pipes and fixtures that contain lead (United

States EPA 2021a). There are three crucial parts to the process. First, there need to be

plumbing materials containing lead, such as pipes, solders, or fixtures. Second, water utilities

are required to implement optimal corrosion control techniques, such as adjusting pH or adding

orthophosphate to make lead-phosphate scale in pipes. But these approaches may not always

be useful and could have unintended consequences given the complexity of water chemistry in

pipes and new findings from environmental engineering research (Pelley 2018). Moreover, water

utilities need to test for drinking water lead concentration. Failing to meet the monitoring

schedule at the water utility level could cause lead pollution to go undiscovered. Third, water

corrodes lead pipes when drinking water is acidic or contains disinfectant, inorganic carbon,

iron, manganese, and aluminum compounds, or other components that promote the corrosion

of scale in lead pipes and cause a release of lead particles. While water utilities alter the water
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chemistry, factors such as temperature and weather may influence the chemistry of drinking

water even after utilities implement corrosion control techniques. (Roy & Edwards 2019).

The backdoor paths in Figure A1 show the complex relationship between various socioeco-

nomic variables and the factors affecting drinking water lead exposure. Backdoor path 1 shows

that an individual’s family background, such as parents’ income, race, and ethnicity, affects the

probability of being born in a house with lead pipes. As mentioned before, replacing lead pipes

could be expensive to many low-income residents even with federal and state funding programs.

For example, the Trenton (New Jersey) Water Works Lead Service Line Replacement Program

limits homeowner expenses to $1,000 by covering the rest of the cost for replacement, which

typically runs between $3,000 and $7,000 (Santucci & Scully 2020). Family income could also

affect students’ educational outcomes by investment in students’ education and productivity.

Backdoor path 2 suggests that on top of backdoor path 1 relationships, family income,

race, and ethnicity could also sort people to live in certain neighborhoods. While the Lead

and Copper Rule requires the lead service line replacement rate, it is up to communities and

utilities to make plans for this replacement. Wealthy neighborhoods may have more resources

to replace lead pipes. There are also better schools in those neighborhoods that would lead

to better student educational outcomes. Backdoor path 3 and backdoor path 4 show a similar

story. Water districts and communities with more funding and resources could implement better

corrosion control techniques. Urbanization, though, can also influence drinking water chemistry

and lead to a higher level of lead from drinking water.

Since there are four open backdoor paths, I control for family income, race and ethnicity,

neighborhood income, population, and poverty to remove bias. Also, I use exogenous variation

in surface water chemistry, the presence of historical lead pipes, and the timing of violations to

discern a causal relationship between drinking water lead exposure and educational outcomes.
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B Appendix B: Tables and Discussion

Figure B1: Number of lead violations by year, 1992-2011

Notes: Figure shows the distribution of lead violations by year. The red lines show years when
changes happen to the Lead and Copper Rule (LCR).
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Figure B3: Texas counties with information on lead pipes in 1900.
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Figure B4: The estimated treatment effects by event time

Notes: Figure presents estimated trends in high school graduation rate using the sample from the
primary analyses plus years “T-8” to “T+6” to better map out the pre-treatment periods and
treatment response. I regress the high school graduation rate with an interaction of Lead and
Copper Rule (LCR) violation status and time dummies for all periods before and after treatment.
Blue connected dots show the coefficient and red dashed lines show the 95% confidence interval,
with the year before a violation as the reference year. I calculate robust, individual level standard
errors.
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Table B1: IV estimates of lead impact using LIML

(1) (2) (3) (4) (5)

A: Reading scores

Chloride * pipes -0.910*** -2.192*** -2.304*** -1.453 -3.911**

(0.061) (0.039) (0.121) (0.886) (1.956)

B: Math scores

Chloride * pipes -2.416*** -3.537*** -4.093*** -5.637*** -5.198***

(0.095) (0.040) (0.063) (0.520) (2.345)

C: Meet reading standard

Chloride * pipes -0.001*** -0.005*** -0.006*** -0.006*** -0.0137***

(0.0003) (0.00008) (0.0005) (0.0009) (0.005)

D: Meet math standard

Chloride * pipes -0.007*** -0.010*** -0.011*** -0.0174*** -0.0127***

(0.0002) (0.00005) (0.0002) (0.001) (0.00287)

Observations 361,106 361,024 361,106 361,106 361,106

First stage F statistics 3,748.53 3,860.22 1,761.13 529.17 30.86

Birth-county fixed effects Yes Yes Yes Yes Yes

Birth-year fixed effects Yes Yes Yes Yes Yes

County-by-year trends No No No No Yes

Individual controls No Yes Yes Yes Yes

Neighborhood controls No No Yes Yes Yes

Weather controls No No No Yes Yes

This table reports the LIML estimates of the effects of lead exposure using my preferred in-

strument. Panels A and B report results on standardized test scores, and panels C and D

report results on meeting the standards. Column 1 shows the coefficient estimates using only

birth-county and birth-year fixed effects. Column 2 includes individual-level characteristics as

controls. Column 3 adds neighborhood controls including poverty rate, unemployment rate, and

median household income. Column 4 also includes weather control variables. Column 5 has

birth-county-by-birth-year trends as a robustness check. Standard errors are in parentheses and

clustered at the county level.

* p < 0.10, ** p < 0.05, *** p < 0.01
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Tables

Table 1: The association between lead concentration and lead violation

(1) (2) (3)

Lead violation Lead violation Lead violation

Lead concentration 17.930∗ 30.180∗ 32.750∗∗

(9.258) (17.080) (14.160)

Year fixed effects No Yes Yes

County fixed effects No No Yes

Observations 6,900 2,497 1,949

R2 0.002 0.011 0.061

Notes: This table reports the coefficients of regressing lead concentration on an indicator of

having lead violation in a given county c in year t. Column 1 reports the coefficient estimates

without any fixed effects. Column 2 includes year fixed effects. Column 3 adds county fixed

effects. The number of observation decreases across columns as observations dropped from

regressions when adding fixed effects and the lead violation indicator do not change over time

and across county. Standard errors are in parentheses.

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 2: Summary statistics of the IV sample

mean median sd min max

Reading score 1431.16 1427 174.51 100 4011

Math score 1464.78 1458 175.47 111 4378

Meet reading standard 0.40 0 0.49 0 1

Meet math standard 0.45 0 0.50 0 1

Lead action level exceedance 0.02 0 0.15 0 1

Lead concentration (ppb) 1.87 1.70 1.14 0.00 12.73

chloride concentration (mg/L) 190.69 73.91 473.37 7.97 23032.16

chloride-sulfate mass ratio (CSMR) 1.70 1.18 1.31 0.06 23.39

Presence of lead pipes 0.02 0 0.14 0 1

Female 0.50 0 0.50 0 1

Native American 0.01 0 0.08 0 1

Asian 0.04 0 0.19 0 1

Black 0.13 0 0.34 0 1

Hispanic 0.56 0 0.50 0 1

White 0.25 0 0.44 0 1

Free lunch 0.47 0 0.50 0 1

Reduced lunch 0.07 0 0.25 0 1

Other economic disadvantage 0.13 0 0.34 0 1

Age 8.09 8 0.28 8 9

Unemployment rate 6.54 6.70 2.00 1.90 15.30

Poverty rate 17.91 17.00 7.07 6.00 39.90

Median household income 48,757 47,159 12,354 23,096 83,968

Population 1,591,577 779,213 1,513,040 272 4,179,796

Maximum temperature 26.43 26.27 1.62 21.35 30.99

Precipitation 2.75 2.62 1.08 0.29 5.67

Notes: This table reports the summary statistics of the IV sample. The number of observations of this

sample is 1,318,783. Education and individual characteristics data is from 2014 to 2019 Texas education

data for individuals born between 2006 and 2011. Reading and math scores are the scaled standardized

test scores in the third grade. Female, Native American, Asian, Black, Hispanic, White, Free Lunch,

Reduced lunch, Other economic disadvantage are indicators of whether a student fits in each category.

Lead concentration data are from the EPA’s National Contaminants Occurrence Database. Lead action

level exceedance shows if the county’s water systems in a given year triggers federal regulatory actions,

and is from the Safe Drinking Water Information System database. Lead concentration is the average

concentration by county-year. Chloride concentration and chloride-sulfate mass ratio are average values

estimated using data from the Water Quality Portal and the Texas Surface Water Quality Monitoring

Information System. Presence of lead pipes is from Clay et al. (2014). Unemployment and population

data is from Local Area Unemployment Statistics. Income and poverty estimates are from Small Area

Income and Poverty Estimates. Maximum temperature and precipitation are from Schlenker & Roberts

(2009).
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Table 3: Summary statistics of the DID sample

mean median sd min max

High school graduate 0.78 1 0.41 0 1

Enroll in public university 0.26 0 0.44 0 1

Lead violation status 0.20 0 0.40 0 1

Female 0.50 0 0.50 0 1

Native American 0.01 0 0.06 0 1

Asian 0.02 0 0.15 0 1

Black 0.15 0 0.35 0 1

Hispanic 0.48 0 0.50 0 1

White 0.35 0 0.50 0 1

Free lunch 0.39 0 0.50 0 1

Reduced lunch 0.08 0 0.27 0 1

Other economic disadvantage 0.07 0 0.25 0 1

Unemployment rate 7.33 6.30 4.23 0.90 39.30

Poverty rate 19.51 17.75 8.27 3.50 52.55

Population 1,011,788 1,109,330 424,312 331 3,471,291

Median household income 31,427 32,072 8,109 11,270 77,303

Maximum temperature 25.59 25.46 1.64 19.75 31.67

Precipitation 3.00 2.98 2.55 3.98 19.22

Notes: This table reports the summary statistics of the DID sample. The number of observations

of this sample is 1,341,729. Education and individual characteristics data is from 2009 to 2019

Texas education data for individuals born between 1991 and 2001. High school graduate is an

indicator if an individual student graduated from Texas public high schools. Enroll in public

university is an indicator of an individual enrolled in public universities in Texas. Lead violation

status data is from EPA’s Safe Drinking Water Information System data set. It is an indicator of

if the water system serving a student’s county of birth has a new lead violation in the student’s

year of birth. Female, Native American, Asian, Black, Hispanic, White, Free Lunch, Reduced

lunch, Other economic disadvantage are indicators of whether a student fits in each category.

Unemployment and population data is from Local Area Unemployment Statistics. Income and

poverty estimates are from Small Area Income and Poverty Estimates. Maximum temperature

and precipitation are from Schlenker & Roberts (2009).
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Table 4: OLS estimates of the impacts of lead concentration on third-grade standardized
tests

(1) (2) (3) (4) (5)

A: third-grade reading

log(lead) -2.335*** -2.296*** -2.191*** -2.029*** -1.299**

(0.624) (0.609) (0.696) (0.684) (0.506)

R2 0.021 0.086 0.086 0.086 0.086

B: third-grade math

log(lead) -1.200 -1.235* -0.882 -0.863 0.898

(0.758) (0.706) (0.817) (0.774) (0.976)

R2 0.028 0.088 0.088 0.088 0.089

C: Met reading standard

log(lead) -0.006*** -0.006*** -0.006*** -0.006*** -0.003**

(0.002) (0.002) (0.002) (0.002) (0.002)

R2 0.018 0.093 0.093 0.093 0.093

D: Met math standard

log(lead) -0.003 -0.003* -0.002 -0.002 0.004*

(0.002) (0.002) (0.002) (0.002) (0.002)

R2 0.021 0.084 0.084 0.084 0.084

Observations 1,323,142 1,323,142 1,323,142 1,323,142 1,323,142

Birth-county fixed effects Yes Yes Yes Yes Yes

Birth-year fixed effects Yes Yes Yes Yes Yes

County-by-year trends No No No No Yes

Individual controls No Yes Yes Yes Yes

Neighborhood controls No No Yes Yes Yes

Weather controls No No No Yes Yes

Notes: This table reports the effects lead concentration on 3rd grade standardized test results

using OLS regressions. Panels A and D report results on reading, and panels B and D report the

results on math. Column 1 reports the coefficient estimates using only birth-county and birth-

year fixed effects. Column 2 includes individual-level controls. Column 3 adds neighborhood

controls including poverty rate, unemployment rate, and median household income. Column 4

also includes weather control variables. Column 5 uses birth-county-by-birth-year trends as a

robustness check. Standard errors are in parentheses and clustered at the county level.

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 5: First stage results of the instruments

(1) (2) (3) (4) (5)

A: Lead concentration

Mean chloride *

presence of lead pipes in 1900
0.0017*** 0.0017*** 0.0016*** 0.0015*** 0.0014***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0002)

Observations 361,103 361,104 361,105 361,106 361,106

R2 0.74 0.74 0.87 0.94 0.95

F statistics 3748.53 3860.22 1761.13 529.17 30.86

SW Chi-sq test (p-value) 0.00 0.00 0.00 0.00 0.00

Hansens J statistic 0.00 0.00 0.00 0.00 0.00

B: Lead action level exceedance

Mean chloride 0.0002** 0.0002** 0.0002** 0.0002** 0.0002**

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Observations 1,318,783 1,318,783 1,318,783 1,318,783 1,318,783

R2 0.35 0.35 0.41 0.42 0.41

F statistics 6.12 6.12 5.97 5.67 6.79

SW Chi-sq test (p-value) 0.01 0.01 0.01 0.02 0.01

Hansens J statistic 0.00 0.00 0.00 0.00 0.00

Birth-county fixed effects Yes Yes Yes Yes Yes

Birth-year fixed effects Yes Yes Yes Yes Yes

County-by-year trends No No No No Yes

Individual controls No Yes Yes Yes Yes

Neighborhood controls No No Yes Yes Yes

Weather controls No No No Yes Yes

Notes: This table reports the first-stage regressions of two instruments: the interaction of

chloride and historical lead pipes, and surface water chloride concentration. Panel A regresses

the interaction of surface water chloride and lead pipes on lead concentration, while panel B

shows the relationship between surface chloride concentration and federal regulatory action level

exceedance. Column 1 reports the coefficient estimates using only birth-county and birth-year

fixed effects. Column 2 includes individual-level controls. Column 3 includes neighborhood

controls including poverty rate, unemployment rate, and median household income. Column

4 includes weather control variables. Column 5 also includes county-by-year trends. Standard

errors in parentheses and clustered at the county level.

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 6: IV estimates of lead impact on third-grade test scores using interaction of chloride
and lead pipes as instrument

(1) (2) (3) (4) (5)

A: Reading scores

Lead -0.910*** -2.192*** -2.304*** -1.453 -3.911**

(0.061) (0.039) (0.121) (0.886) (1.956)

B: Math scores

Lead -2.416*** -3.537*** -4.093*** -5.637*** -5.198**

(0.095) (0.040) (0.063) (0.520) (2.345)

C: Meet reading standard

Lead -0.001*** -0.005*** -0.006*** -0.008*** -0.002

(0.000) (0.000) (0.001) (0.001) (0.006)

D: Meet math standard

Lead -0.007*** -0.010*** -0.011*** -0.017*** -0.007

(0.000) (0.000) (0.000) (0.001) (0.004)

Observations 361,106 361,106 361,106 361,106 361,106

First stage F statistics 3,748.53 3,860.22 1,761.13 529.17 30.86

Birth-county fixed effects Yes Yes Yes Yes Yes

Birth-year fixed effects Yes Yes Yes Yes Yes

County-by-year trends No No No No Yes

Individual controls No Yes Yes Yes Yes

Neighborhood controls No No Yes Yes Yes

Weather controls No No No Yes Yes

Notes: This table reports the effects of average lead concentration on third-grade reading and

math test results using the interaction of surface water chloride and the historical presence of lead

pipes as an instrument. Panels A and D report results on reading, and panels B and D report the

results on math. Column 1 reports the coefficient estimates using only birth-county and birth-

year fixed effects. Column 2 includes individual-level controls. Column 3 adds neighborhood

controls including poverty rate, unemployment rate, and median household income. Column 4

also includes weather control variables. Column 5 uses birth-county-by-birth-year trends as a

robustness check. Standard errors are in parentheses and clustered at the county level.

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 7: Long-run impact on high school graduation rate and public university enrollment

(1) (2) (3) (4) (5)

A: High school graduation rate

Lead violation -0.860*** -0.860*** -0.570*** -0.570*** -0.530***

(0.320) (0.290) (0.260) (0.260) (0.300)

Observations 1,341,729 1,341,729 1,341,729 1,341,729 1,341,729

R2 0.024 0.052 0.052 0.052 0.053

B: Public university enrollment

Lead violation -0.240 -0.190 0.240 0.270 0.350*

(-0.280) (-0.270) (-0.220) (-0.230) (-0.190)

Observations 1,341,757 1,341,757 1,341,757 1,341,757 1,341,757

R2 0.023 0.088 0.088 0.088 0.088

C: High school graduation rate with all violation years

Lead violation -0.760*** -0.670*** -0.250 -0.260 -0.400

(0.260) (0.250) (0.190) (0.190) (0.270)

Observations 1,341,757 1,341,757 1,341,757 1,341,757 1,341,757

R2 0.024 0.052 0.052 0.052 0.053

Birth-year fixed effects Yes Yes Yes Yes Yes

Birth-county fixed effects Yes Yes Yes Yes Yes

County-by-year trends No No No No Yes

Individual controls No Yes Yes Yes Yes

Neighborhood controls No No Yes Yes Yes

Weather controls No No No Yes Yes

Notes: Panel A reports the effects of lead violation exposure in one’s birth year on high school

graduation rate, and Panel B reports the effects of violation exposure in one’s birth year on Texas

public university enrollment rate. Panel C reports the effects of violation exposure in one’s birth

year on high school graduation rate using all violation years. Column 1 reports the coefficient

estimates using only birth-county and birth-year fixed effects. Column 2 includes individual-

level controls. Column 3 includes neighborhood controls including poverty rate, unemployment

rate, and median household income. Column 4 includes weather control variables. Column 5

includes birth-county-by-birth-year trends. Standard errors are in parentheses and clustered at

the county level.

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 8: IV estimates of lead impact on third-grade test scores using chloride level as
instrument

(1) (2) (3) (4) (5)

A: Reading scores

Lead action level exceedance -17.990*** -19.830*** -18.990*** -18.300*** -14.880**

(3.257) (5.126) (5.583) (5.170) (6.856)

B: Math scores

Lead action level exceedance -4.116 -5.480 -4.044 -1.525 5.065

(3.725) (5.035) (5.391) (6.804) (6.513)

C: Meet reading standard

Lead action level exceedance -0.647*** -0.070*** -0.068*** -0.068*** -0.065*

(0.009) (0.013) (0.014) (0.013) (0.036)

D: Meet math standard

Lead action level exceedance -0.008 -0.012 -0.006 0.005 0.058

(0.014) (0.015) (0.017) (0.018) (0.046)

Observations 1,318,783 1,318,783 1,318,783 1,318,783 1,318,783

First stage F statistics 6.12 6.12 5.97 5.67 6.79

Birth-county fixed effects Yes Yes Yes Yes Yes

Birth-year fixed effects Yes Yes Yes Yes Yes

County-by-year trends No No No No Yes

Individual controls No Yes Yes Yes Yes

Neighborhood controls No No Yes Yes Yes

Weather controls No No No Yes Yes

Notes: This table reports the effects of lead exposure in one’s birth year on third-grade standard-

ized test scores using chloride as an instrument. Panel A reports the effects of lead concentrations

exceeding the federal regulatory level on third-grade reading scores, and panel B presents the

impact on scaled math scores. Panels C and D also present effects of exceeding lead regulatory

levels on meeting reading and math standards. Column 1 reports the coefficient estimates us-

ing only birth-county and birth-year fixed effects. Column 2 includes individual-level controls.

Column 3 adds neighborhood controls including poverty rate, unemployment rate, and median

household income. Column 4 includes weather control variables. Column 5 also includes birth-

county-by-birth-year trends. Standard errors are in parentheses and clustered at the county

level.

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 9: Robustness checks with housing age

Lead Reading Math

(1) (2) Scores (3) Meeting standards (4) Scores (5) Meeting standards

Chloride * lead pipe 0.002***

(0.000)

Lead -2.647* -0.009*** -8.844*** -0.027***

(1.365) (0.001) (0.939) (0.002)

Observations 361,106 361,106 361,106 361,106 361,106

First stage F statistics 134.64 134.64 134.64 134.64 134.64

SW Chi-sq (p-value) 0.00

Hansens J statistics 0.00

Notes: This table reports regression coefficients using the interaction of surface water chloride

and the historical presence of lead pipes as an instrument controlling for the median housing

price by county. Columns 2 and 3 report the effects of lead concentrations on third-grade

reading and math scores. Columns 4 and 5 present effects on meeting reading and math

standards. I also include birth-year fixed effects, birth-county fixed effects, individual charac-

teristics, neighborhood characteristics, and weather as described before. Standard errors are in

parentheses and clustered at the county level.

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 10: Robustness checks controlling for water system size

(1) (2) (3) (4)

Population served Number of small and very small systems

Lead violations -0.006** -0.005* -0.006** -0.006*

(0.003) (0.003) (0.003) (0.003)

Observations 1,340,066 1,340,066 1,340,066 1,340,066

R2 0.052 0.053 0.052 0.053

Birth-year fixed effects Yes Yes Yes Yes

Birth-county fixed effects Yes Yes Yes Yes

County-by-year trends No Yes No Yes

Individual controls Yes Yes Yes Yes

Neighborhood controls Yes Yes Yes Yes

Weather controls Yes Yes Yes Yes

Notes: This table reports regression coefficients using DID model controlling for population

size served by each public utility as robustness checks. Column 1 reports first stage results.

Columns 2 and 3 control for the population served by public water systems, and columns 3

and 4 control for the number of small and very small systems. Columns 1 and 3 are results

with birth-year fixed effects, birth-county fixed effects, individual characteristics, neighborhood

controls, and weather in specification (1). Columns 2 and 4 add birth-county-by-birth-year

trends. Standard errors are in parentheses and clustered at the county level.

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 11: First stage of IV using the choloride-sulfate mass ratio and lead pipes as in-
struments

(1) (2) (3) (4) (5)

A Lead concentration

chloride-sulfate ratio *

presence of lead pipes in 1900
0.564*** 0.565*** 0.765** 0.657*** 0.586***

(0.006) (0.006) (0.140) (0.110) (0.030)

Observations 361,106 361,106 361,106 361,106 361,106

R2 0.574 0.575 0.775 0.872 0.895

F statistics 10,289.35 10,119.34 31.24 38.06 121.97

SW Chi-sq test (p-value) 0.00 0.00 0.00 0.00 0.00

Hansens J statistic 0.00 0.00 0.00 0.00 0.00

B Lead action level exceedance

chloride-sulfate mass ratio 0.062 0.062 0.061* 0.058 0.062*

(0.040) (0.040) (0.037) (0.035) (0.037)

Observations 1,318,783 1,318,783 1,318,783 1,318,783 1,318,783

R2 0.281 0.281 0.354 0.369 0.361

F statistics 2.34 2.34 2.77 2.79 3.08

SW Chi-sq test (p-value) 0.13 0.13 0.10 0.09 0.08

Hansens J statistic 0.00 0.00 0.00 0.00 0.00

Birth-county fixed effects Yes Yes Yes Yes Yes

Birth-year fixed effects Yes Yes Yes Yes Yes

County-by-year trends No No No No Yes

Individual controls No Yes Yes Yes Yes

Neighborhood controls No No Yes Yes Yes

Weather controls No No No Yes Yes

Notes: This table reports first stage results using the interaction of chloride-sulfate mass ratio

and lead pipes and the ratio alone as instruments. Panel A shows first stage results between my

instrument and lead concentration, while panel B shows the relationship between the ratio and

indicator of exceeding lead regulatory level. Column 1 reports the coefficient estimates using

only birth-county and birth-year fixed effects. Column 2 includes individual-level characteristics.

Column 3 add neighborhood characteristics including poverty rate, unemployment rate, and

median household income. Column 4 adds weather control variables. Column 5 includes birth-

county-by-birth-year trends as a robustness check. Standard errors are in parentheses and

clustered at the county level.

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 12: IV estimates results using chloride-sulfate mass ratio and lead pipes as instru-
ment

(1) (2) (3) (4) (5)

A: Reading scores

Mean lead -2.396*** -4.081*** -4.070*** -3.902*** -7.387***

(0.144) (0.220) (0.932) (1.124) (2.307)

B: Math scores

Mean lead -2.943*** -4.402*** -5.049*** -7.623*** -8.184***

(0.292) (0.222) (0.623) (0.743) (2.241)

C: Meet reading standard

Mean lead -0.004* -0.009* -0.011** -0.013** 0

(0.001) (0.000) (0.002) (0.003) (.)

D: Meet math standard

Mean lead -0.007*** -0.011*** -0.013*** -0.023*** 0

(0.001) (0.001) (0.002) (0.003) (.)

Observations 361,106 361,106 361,106 361,106 361,106

First stage F statistics 10289.35 10119.34 31.24 38.06 121.97

Birth-county fixed effects Yes Yes Yes Yes Yes

Birth-year fixed effects Yes Yes Yes Yes Yes

County-by-year trends No No No No Yes

Individual controls No Yes Yes Yes Yes

Neighborhood controls No No Yes Yes Yes

Weather controls No No No Yes Yes

Notes: This table reports the effects of average lead concentration on third-grade reading and

math test results using the interaction of the chloride-sulfate mass ratio and the historical

presence of lead pipes as an instrument. Panels A and B report results on standardized test

scores, and panels C and D present effects on meeting standards. Panels A and C report results

on reading, while panels B and D report the results on math. Column 1 show the coefficient

estimates using birth-county and birth-year fixed effects. Column 2 includes individual-level

characteristics. Column 3 adds neighborhood controls including poverty rate, unemployment

rate, and median household income. Column 4 also includes weather variables. Column 5 has

birth-county-by-birth-year trends as a robustness check. Standard errors are in parentheses and

clustered at the county level.

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 13: IV estimates results using chloride-sulfate mass ratio as instrument

(1) (2) (3) (4) (5)

A: Reading scores

Lead action level exceedance -14.520* -18.250* -22.690* -25.550** -16.500

(8.529) (9.583) (10.250) (11.080) (14.030)

B: Math scores

Lead action level exceedance -5.431 -9.267 -10.530 -5.265 20.340

(10.870) (12.120) (13.080) (12.760) (18.330)

C: Meet reading standard

Lead action level exceedance -0.056** -0.068** -0.070** -0.083*** -0.065*

(0.027) (0.030) (0.031) (0.031) (0.036)

D: Meet math standard

Lead action level exceedance -0.028 -0.040 -0.046 -0.021 0.058

(0.027) (0.032) (0.035) (0.031) (0.046)

Observations 1,318,783 1,318,783 1,318,783 1,318,783 1,318,783

First stage F statistics 2.34 2.34 2.77 2.79 3.08

Birth-county fixed effects Yes Yes Yes Yes Yes

Birth-year fixed effects Yes Yes Yes Yes Yes

County-by-year trends No No No No Yes

Individual controls No Yes Yes Yes Yes

Neighborhood controls No No Yes Yes Yes

Weather controls No No No Yes Yes

Notes: This table reports the effects of average lead concentration using the chloride-sulfate mass

ratio as an instrument. Panels A and B report results on standardized test scores, and panels C

and D report results on meeting the standards. Column 1 shows the coefficient estimates using

only birth-county and birth-year fixed effects. Column 2 includes individual-level characteristics

as controls. Column 3 adds neighborhood controls including poverty rate, unemployment rate,

and median household income. Column 4 also includes weather control variables. Column 5 has

birth-county-by-birth-year trends as a robustness check. Standard errors are in parentheses and

clustered at the county level.

* p < 0.10, ** p < 0.05, *** p < 0.01
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(a) By year (b) By county

Figure 1: Lead concentration by year and county 2006-2011

Notes: Panel (a) shows year fixed effects plus a constant from regressions that control for county
fixed effects following Keiser & Shapiro (2019a). Blue connected dots show yearly values and
red dashed lines show the 95% confidence interval for year fixed effect estimates, with 2006 as
the reference year. Standard errors are clustered by county. Panel (b) shows the county average
lead concentration over the full period, 2006-2011.
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(a) By year (b) By county

Figure 2: Chloride concentration by year and county 2006-2011

Notes: Panel (a) shows year fixed effects plus a constant from regressions that control for county
fixed effects following Keiser & Shapiro (2019a). Blue connected dots show yearly values and
red dashed lines show the 95% confidence interval for year fixed effect estimates, with 2006 as
the reference year. Standard errors are clustered by county. Panel (b) shows the county average
chloride concentration over the full period, 2006-2011.
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(a) IV (b) DID

Figure 3: Heterogeneity impact of drinking water lead exposure

Notes: This figure reports regression coefficients on the interaction term of treatment variable
and an indicator of race, gender and economic background groups from 30 separate regressions.
The regressions are estimated using the individual-level data of the two samples. The dependent
variables are third-grade reading scores, math scores and high school graduation rate. Figure 3a
uses the IV sample and 3b uses the DID sample. Figure 3a reports estimates from reduced-form
models that include additional interaction terms between the preferred instrument and a group-
specific dummy variable. I also the group-specific dummy variable and the instrument variables
separately in the regression models. Figure 3b reports estimates from the DID model with the
additional interaction term of the lead violation exposure in one’s birth year and the group
dummy, a group-specific dummy and violation status in one’s birth year. I also include birth-
year fixed effects, birth-county fixed effects, individual characteristics, neighborhood controls
and weather.
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